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ABSTRACT 
n this study, new machine learning models 

were developed for the assessment of 

reliability and availability for machinery 

maintenance using pattern recognition artificial 

neural network. The choice of a classification 

model stemmed from the nature of available data. 

Hence, the input data variables for cranes were 

obtained from Hyster RS45-27 CH and 

Konecranes Liftace TFC 45 97-2002. The artificial 

neural network model was developed using 

MATLAB. Trial and error was initially used to 

arrive at the neural network architecture that 

gave the lowest mean square error. The 

architecture that was finally selected consists of 

input layer, three hidden layers and an output 

layer. The first and the last hidden layers had a 

total of 10 neurons each, while the second hidden 

layer had a total of 20 neurons. However, for the 

cranes, the highest prediction accuracy went to 

PRN-LMA with an accuracy of 87%, followed by 

PRN-CGF with an overall prediction accuracy of 

86.3%. Next were PRN-OSS and PRN-BFG with 

prediction accuracies of 84.9% and 84.6% 

respectively, while PRN-BR was the least 
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Introduction 
Most production industries 

require complex systems that 

are available for an extended 

period, and some of the indices 

used to verify the quality of any 

operating system are the 

system's reliability and 

accessibility. This is because it 

has become increasingly difficult 

to keep operating systems in 

excellent functioning order due 

to the increase in innovation 

these days. As the technologies 

of operating systems advance, 

there is a high necessity to pay 

great attention to the machine's 

maintainability, availability, and 

reliability (Soualhi et al., 2020).  

The reliability of a component or 

system is the likelihood that the 

component or system would 

operate satisfactorily for a 

defined period under specified 

operating conditions. The 
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accurate, with an accuracy of 76.6%. Generally, the PRN-LMA models gave the highest 

prediction accuracy, while the Bayesian regularization models (PRN-BR) gave the least 

prediction accuracy. Particularly, PRN-CGF model, followed by PRN-LMA model 

predicted the highest number of failure days, while both models gave the highest 

prediction accuracy for failure days.  

 

Keywords: Reliability, Machine Learning, Pattern Recognition, Cranes. 

 

ossibility that an item or system will work satisfactorily as required when used 

under certain predefined conditions is known as its availability. Maintainability 

refers to the likelihood that an item, component or equipment could be restored 

to its satisfactory functional conditions in a specific range and time frame under specified 

conditions by individuals with the required skillsets, resources, and techniques (Odeyar 

et al., 2022). 

Currently, research on asset health and life span prediction has significantly increased 

in engineering asset management discipline reflecting the awareness of engineers today 

about the importance of machines' operational state. Maintenance has often been the 

traditional approach applied to increase machine availability. However, machine 

availability does not always imply machine usage because the ripple effects of 

breakdowns result in idling losses and subsequent productivity losses. Breakdowns and 

other failures often lead to machines underutilization and to mitigate this and other 

setbacks (Serey et al., 2023).  

Furthermore, degradation affects the equipment's life span at distinct periods, lowering 

the system's reliability (Ezendiokwere et al., 2021). With better understanding and 

research on maintainability, availability, and reliability assessment, the health and life 

span of machinery can be significantly improved. In general, proper reliability and 

availability analysis can improve the performance of plant equipment. This is because 

the plant's efficiency suffers when the operating system is unavailable and unreliable. 

Poor availability and reliability lead to failures in production units.  

Although there are different maintenance methods that can be adopted under different 

conditions, yet, the maintenance management’s key role includes mostly predictive 

maintenance (PdM), preventive maintenance (PM), and condition-based maintenance. 

The maintenance team of the various departments in different establishments most 

times carries out daily/routine plant maintenance checks. In addition to the equipment 

daily checks, the maintenance section and the vendors carry out scheduled maintenance 

and overhauling after a certain period, for instance, after about 176 hours. A monthly 

p 
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diagnosis of the operational conditions like vibration, speed, throughput, and state of the 

lubrication oil is evaluated by the maintenance department (Fontes & Pereira, 2016). 

Every reliability analysis effort involves searching the state space of the system for those 

states that represent the event of interest, typically failure of the given system. This 

essentially translates into a search procedure to efficiently identify states to be examined 

and then using a mechanism to evaluate these states. This makes reliability and 

availability studies suitable for application of machine learning techniques like artificial 

neural networks (Payette & Abdul-Nour, 2023). 

 

Materials and Methods 

The work flow for the general artificial neural network design process has important key 

steps (Fontes & Pereira, 2016). These include data collection and preparation, network 

creation and configuration, initialization of weights and biases, network training, 

validation (post-training analysis) and demonstration. The failure data used for 

developing the artificial neural network machine learning model in this study was from 

the Port Harcourt wharf/seaport. The raw failure data obtained were tabulated 

according to month of operation, with each table having date, start and stop times, daily 

operating hours and frequency of machine failures. In addition, time between failure 

(TBF) data was equally generated from the raw data.  

These input variables were first divided into a training, test and validation data sets in 

the ratio 60:20:20. The whole data sets were later fed into a pattern recognition 

classification feed forward neural network. Pattern recognition is the process of 

classifying input data into objects, classes, or categories using computer algorithms 

based on key features or regularities (Serey et al., 2023). Pattern recognition networks 

(PRN) are feed forward neural networks that can be trained to classify inputs according 

to target classes. It has applications in areas like computer vision, image segmentation, 

object detection, radar processing, speech recognition and text classification, but rarely 

used for reliability and availability studies (Odeyar et al., 2022).  

However, Soualhi et al. (2020) suggested that this method presents many advantages for 

fault detection and diagnostics given its reliable results and facility for manipulating 

artificial intelligence tools like machine leaning. The target data for pattern recognition 

networks usually consists of vectors of all zero values except for a 1 in element i, where 

i is the class they are to represent. The choice of a classification model stemmed from the 

nature of available data. The artificial neural network model was developed using 

MATLAB.  
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Trial and error was initially used to arrive at the neural network architecture that gave 

the lowest mean square error. The architecture that was finally selected consists of input 

layer, three hidden layers and an output layer. The first and the last hidden layers had a 

total of 10 neurons each, while the second hidden layer had a total of 20 neurons.  The 

final model had easy start status (which records whether the machine was easily started 

or not), daily operating hours and time between failures as input variables, while the 

output variable was the machine failure potential. The MATLAB model results were 

subsequently analyzed.   

 

 

Figure 1 Workflow for developing data-driven machine learning model for fault 

detection (Odeyar et al., 2022)  

 

Optimization Algorithms 

A number of optimization algorithms were utilized in training the pattern recognition 

neural network model. These algorithms include the following.  

 

Levenberg–Marquardt Algorithm 

Levenberg–Marquardt algorithm is an optimization technique for nonlinear least-square 

minimization problems. LMA is a local optimization algorithm; hence, the delivered 

solution is often a local minimum. LMA is characterized by the ability to find a final 

solution although the starting point can be far from this solution. This algorithm is 

nearby to Newton’s method, but unlike the latter, the so-called Hessian matrix is not 

calculated in LMA. Instead, it is approximated, and a new parameter called damping 

parameter (regularization), whose the role is to stabilize the algorithm and avoid 
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singular matrix cases during the optimization process, is introduced. The following 

equations highlight, respectively, the Hessian matrix approximation and the gradient 

matrix utilized in LMA (Chu et al., 2017): 

                                                                       𝐻 = 𝐽𝑇𝐽                                                               (1) 

                                                                       𝑔 = 𝐽𝑇𝑒                                                               (2) 

where T stands for matrix transpose operator, J is the Jacobian matrix and e is the error 

vector. In addition to using the above-mentioned Hessian matrix approximation, the 

introduced damping parameter is employed in the Newton’s formula to obtain the 

updating equation shown: in which, t is the iteration subscript, and the coefficient 𝜆 

denotes the damping parameter that is decreased iteratively if there is enhancements in 

the objective function, or increased otherwise. For the case of MLP weights optimization, 

the x term in (3) stands for weights. 

                                                       𝑥𝑖+1 = 𝑥𝑖 − (𝐻 − 𝜆𝐼)−1 × 𝑔                                               (3) 

 

Being highly efficient and stable with a high convergence speed, LMA has hitherto 

received great interest in neural network weights optimization (Amar et al., 2022). 

 

Bayesian Regularization (BR) Algorithm 

Bayesian regularization (BR) algorithm is a well-formulated algorithm for neural 

network training phase. Indeed, the principle of BR algorithm in optimizing the weights 

and bias of neural networks consists in applying LMA concept after formulating a 

minimization problem that includes an objective function with a summation of weighted 

two error terms: squared network weights (Ew) and squared errors (ED). The following 

equation shows this objective function:  

                                                             𝐹(𝜔) = 𝛼𝐸𝑤 + 𝛽𝐸𝐷                                                      (4) 

 

where 𝛼  and  𝛽 point out the objective function parameters. These two parameters are 

gained from Bayes’ theorem. The optimization process of BR consists firstly in selecting 

the training set and guessing the weight vector, and this by means of Gaussian 

distribution. Accordingly, by applying some algebraic operations to the outcomes of the 

initialization step, the 𝛼 and 𝛽 optimum values can be achieved. Then, LMA is used to 

minimize F(𝜔), and according to its results, the weights are updated. These steps are 

reiterated until a stopping criterion is verified (Amar et al., 2022). 

 

Conjugate Gradient Algorithm 
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All the conjugate gradient algorithms start out by searching in the steepest descent 

direction (negative of the gradient) on the first iteration. 

                                                                      𝒑𝒐 = −𝒈𝒐                (5) 

 

A line search is then performed to determine the optimal distance to move along the 

current search direction: 

                                                                  𝑿𝒊+𝟏 = 𝑿𝒊𝛼𝑖𝒑𝒊     (6) 

Then the next search direction is determined so that it is conjugate to previous search 

directions. The general procedure for determining the new search direction is to 

combine the new steepest descent with the previous search direction: 

                                                              𝒑𝒊 = −𝒈𝒊 + 𝛽𝑖𝒑𝒊−𝟏      (7) 

 

The various versions of the conjugate gradient algorithm are distinguished by the 

manner in which the constant 𝛽𝑖 is computed. For the Fletcher-Reeves update, the 

procedure is: 

                                                                   𝛽𝑖 =
𝒈𝒊

𝑻𝒈𝒊

𝒈𝒊−𝟏
𝑻 𝒈𝒊−𝟏

                                                         (8) 

 

The above equation represents the ratio of the norm squared of the current gradient to 

the norm squared of the previous gradient. The conjugate gradient algorithms only a 

little more storage than the simpler algorithms. Therefore, these algorithms are good for 

networks with a large number of weights. 

 

Broyden, Fletcher, Goldfarb and Shanno (BFGS) Quasi-Newton 

Newton’s is an alternative to the conjugate gradient methods for fast optimization. The 

basic step of Newton’s method is:  

                                                             𝑿𝒊+𝟏 = 𝑿𝒊 − 𝑨𝒊
−𝟏𝒈𝒊                                                   (9) 

 

Where 𝐴𝑖
−1 is the Hessian matrix (second derivatives) of the performance index at the 

current values of the weights and biases.  

Newton’s method often converges faster than conjugate gradient methods. 

Unfortunately, it can complex and expensive to compute the Hessian matrix for feed-

forward neural networks. There is a class of algorithms that is based on Newton’s 

method, but which does not require calculation of second derivatives. These are called 

quasi-Newton (or secant) methods. They update an approximate Hessian matrix at each 
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iteration of the algorithm. The quasi-Newton method that has been most successful in 

published studies is the Broyden, Fletcher, Goldfarb and Shanno (BFGS) update.  

This algorithm requires more computation in each iteration and more storage than the 

conjugate gradient methods, although it generally converges in fewer iterations. The 

approximate Hessian matrix must be stored, and its dimension is of the order of the 

number of weights and biases in the network. BFGS quasi-Newton method can train any 

network as long as its weight, net input and transfer functions have derivative functions. 

Back-propagation is usually utilized in calculating derivatives of performance with 

respect to the weight and bias variables X. Each variable is adjusted according to the 

following: 

                                                               𝑋𝑖+1 = 𝑋𝑖 + 𝑎𝑑𝑋       (10) 

 

Where dX is the search direction.  The parameter a is selected to minimize the 

performance along the search direction. The line search function is used to locate the 

minimum point. The first search direction is the negative of the gradient of performance. 

Subsequently, the search direction is computed according to the following formula: 

                                                                     𝑑𝑋 =
−𝐻

𝑔𝑋
      (11) 

 

Where gX is the gradient and H is the approximate Hessian matrix. 

 

One Step Scant Method 

Because the BFGS algorithm requires more storage and computation in each iteration 

than the conjugate gradient algorithms, there was a need to for a secant approximation 

with smaller storage and computation requirements. The one step secant method is an 

attempt to bridge the gap between conjugate gradient algorithms and the quasi-Newton 

algorithms. The one step secant method does not store the complete Hessian matrix, but 

assumes that at each iteration, the previous Hessian was the identity matrix. This has the 

advantage that the new search direction can be computed without computing a matrix 

inverse. The algorithm requires less storage and computation per epoch than the BFGS 

algorithm. However, it requires slightly more storage and computation per epoch than 

the conjugate gradient algorithms. Each variable is adjusted according to the following: 

                                                               𝑋𝑖+1 = 𝑋𝑖 + 𝑎𝑑𝑋    (12) 
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Where dX is the search direction.  The parameter a is selected to minimize the 

performance along the search direction. The line search function is used to locate the 

minimum point. The first search direction is the negative of the gradient of performance. 

Subsequently, the search direction is computed from the new gradient and the previous 

steps and gradients according to the following formula: 

                                                 𝑑𝑋 = −𝑔𝑋 + 𝐴𝑐 ∗ 𝑋−𝑠𝑡𝑒𝑝 + 𝐵𝑐 ∗ 𝑑𝑔𝑋      (13) 

 

Where gX is the gradient, X-step is the change in the weights on the previous iteration and 

dgX is the change in gradient from the last iteration. 

 

Results and Discussion 

 
Figure 2 Training, validation, and testing curves for pattern recognition Levenberg-

Marquardt (PRN-LMA) model  

 

Figure 2 shows training, validation, and testing curves for pattern recognition 

Levenberg-Marquardt (PRN-LMA) model of cranes. From the graph, it can be seen that 

all errors including training, validations, and test errors consistently reduced until after 
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the third epoch. The combined errors continued to reduce such that it recorded the 

lowest combined training, validation and test error values occurred during the ninth 

epoch.  After this period, both validation and training errors started to increase, while 

the training error decreased further as the number of epochs increased.  The similarity 

in trend between the training, validations, and test curves depicts a successful training 

of the pattern recognition Levenberg-Marquardt (PRN-LMA) model and its potential use 

in assessing the failure potential of cranes. 

 

 
Figure 3 Prediction error histogram for pattern recognition Levenberg-Marquardt (PRN-

LMA) model 

 

Figure 3 shows the prediction error histogram for pattern recognition Levenberg-

Marquardt (PRN-LMA) model for cranes. Here, the error is measured as the difference 

between the target variable values and the corresponding predicted outcome values. A 

good model should have errors congregated around the zero error mark, such that the 

highest histogram bars would be found around the zero error line. From the histogram, 

it can be deduced that a majority of the error instances were located around the zero 

error line, while the error instances recorded further away from the zero error line were 
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actually few. This can be confirmed by the smaller number of error instances recorded 

for errors further from the zero error line. Since the majority of the error instances were 

congregated around the zero error line, it demonstrates the ability of the pattern 

recognition Levenberg-Marquardt (PRN-LMA) model to predict failure of cranes. This 

result is obviously useful in assessing the failure potential of cranes.    

  
Figure 4 Confusion matrix for pattern recognition Levenberg-Marquardt (PRN-LMA) 

model 

 

Figure 4 shows a representation of the confusion matrix for pattern recognition 

Levenberg-Marquardt (PRN-LMA) model. From the figure, it can be noticed that the 

confusion matrices of the test, validation and test data were all presented. In addition, a 

combined matrix of all the data was equally presented. The figure shows that after 

successfully training the Levenberg-Marquardt (PRN-LMA) model, the training result 
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gave 87.6% correct classifications against 12.4% wrong classification. When the trained 

model was validated using validation data, the validation results gave 86.7% correct 

predictions, with 13.3% wrong classifications. The trained model was equally tested and 

the test results showed that 84.4% of the test data were correctly classified, while 15.6% 

were wrongly classified. However, the combined confusion matrix showed that for the 

whole data set, 87.0% of the data set was accurately classified using the available input 

variables, but 13.0% of the data set was wrongly classified. The wrong classifications 

include both false positive and false negative classifications. 

 

 
Figure 5 Receiver operating characteristic plot for pattern recognition Levenberg-

Marquardt (PRN-LMA) model 

Figure 5 shows the receiver operating characteristic plot for pattern recognition 
Levenberg-Marquardt (PRN-LMA) model. The figure depicts a plot of true positive rate 
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against false positive rate. Plots like this are equally helpful in gauging the accuracy of 
machine learning classification models. Ideally, the receiver operating characteristic 
curve for a good model would normally line the outer edges of the upper triangle formed 
by counterdiagonal that divides the square of the plot into two. Such that less accurate 
models have receiver operating characteristic curves that somewhat deviates from the 
aforementioned ideal curve. The more the receiver operating characteristic curve 
deviates from the egdes, the less accurate the classification model. From the figure, it can 
be deduced that the receiver operating characteristic curves for training, validation, and 
test data all had slight deviations from the edges, which confirms the substantial 
accuracy of the characteristic plot for pattern recognition Levenberg-Marquardt (PRN-
LMA) model for accurately classifying the failure potential of cranes. 
Another important metric derivable from the receiver operating characteristic plot is the 
area under the curve (AUC). The area under the curve of an accurate classification model 
would amount to unity, given that the square that makes up the receiver operating 
characteristic plot always has a unit length. But a completely inaccurate model would 
have a receiver operating characteristic plot that lines the counterdiagonal, which gives 
an area under the curve value of 0.5. Hence, most classification models will have area 
under the curve values that lie between 0.5 and 1. Since the receiver operating 
characteristic plots shown above are considerably far from the counterdiagonal, the 
Levenberg-Marquardt (PRN-LMA) model can be described as satisfactorily accurate.  
 

 
Figure 6 Training, validation, and testing curves for pattern recognition Bayesian 

regularization (PRN-BR) model  

Figure 6 shows training, validation, and testing curves for pattern recognition Bayesian 

regularization (PRN-BR) model of cranes. From the graph, it can be seen that all errors 
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including training, and test errors consistently reduced shortly after the training was 

initiated. The combined errors continued to reduce such that it recorded the lowest 

combined training, and test error values occurred during the six hundred and twenty 

sixth (626th) epoch.  The longer time it took the Bayesian regularization (PRN-BR) model 

to achieve optimality in terms of training and testing errors can be explained by the fact 

the Bayesian regularization optimization algorithm is a more computationally 

demanding routine to undertake compared to other optimization algorithms.   

 

 
Figure 7 Prediction error histogram for pattern recognition Bayesian regularization 

(PRN-BR) model 

 

Figure 7 shows the prediction error histogram for pattern recognition Bayesian 

regularization (PRN-BR) model for cranes. From the histogram, it can be deduced that 

all the error instances were located far from the zero error line. Since all the error 

instances were far away from the zero error line, it demonstrates the inability of the 

pattern recognition Bayesian regularization (PRN-BR) model to predict failure of cranes. 

This result has obviously implications when assessing the failure potential of cranes. It 
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shows that the Bayesian regularization (PRN-BR) model cannot be used with confidence 

in assessing the reliability and availability of cranes.   

 

 
Figure 8 Confusion matrix for pattern recognition Bayesian regularization (PRN-BR) 

model 

 

Figure 8 shows a representation of the confusion matrix for pattern recognition Bayesian 
regularization (PRN-BR) model. From the figure, it can be noticed that the confusion 
matrices of the test, validation and test data were all presented. In addition, a combined 
matrix of all the data was equally presented. The figure shows that after successfully 
training the Bayesian regularization (PRN-BR) model model, the training result gave a 



06.30.2024  Pg.15  
   
         Vol. 4, No. 2 
 
 

BERKELEY RESEARCH & PUBLICATIONS INTERNATIONAL  
Bayero University, Kano, PMB 3011, Kano State, Nigeria. +234 (0) 802 881 6063,  

 berkeleypublications.com 

 

 

Journal of African Sustainable Development 

E-ISSN 3026-8575 P-ISSN 3027-1266 

comparatively low 76.8% correct classifications against an equally high 23.2% wrong 
classification. The trained model was equally tested and the test results showed that a 
comparatively low 75.6% of the test data were correctly classified, while an equally high 
24.4% were wrongly classified. The model does not have entries for validation confusion 
matrix because the Bayesian regularization optimization algorithm does not utilize 
validation data. However, the combined confusion matrix for both training and test data 
showed that for the whole data set, a meager 76.6% of the data set was accurately 
classified using the available input variables, and a considerably high 23.4% of the data 
set was wrongly classified. This results corroborates the error histogram results 
obtained in Figure 7 above. 
 

 
Figure 9 Receiver operating characteristic plot for pattern recognition Bayesian 

regularization (PRN-BR) model 
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Figure 9 shows the receiver operating characteristic plot for pattern recognition 

Bayesian regularization (PRN-BR) model. From the figure, it can be deduced that the 

receiver operating characteristic curves for training, validation, and test data all lied on 

the counterdiagonal of the square representing the receiver operating characteristic 

plot. This confirms the substantial inaccuracy of the characteristic plot for pattern 

recognition Bayesian regularization (PRN-BR) model for determining the failure 

potential of cranes. In addition, since the receiver operating characteristic plots shown 

above are actually on the counterdiagonal, it gives an area under the curve value of 0.5 

for all the plots. This result further confirms that the Bayesian regularization (PRN-BR) 

model cannot be described as satisfactorily accurate.  

 

 
Figure 10 Training, validation, and testing curves for pattern recognition conjugate 
gradient (PRN-CGF) model  
 
Figure 10 shows training, validation, and testing curves for pattern recognition 

conjugate gradient (PRN-CGF) model of cranes. From the graph, it can be seen that all 

errors including training, validations, and test errors consistently reduced until after the 

third epoch. The combined errors continued to reduce (rather slowly) such that it 



06.30.2024  Pg.17  
   
         Vol. 4, No. 2 
 
 

BERKELEY RESEARCH & PUBLICATIONS INTERNATIONAL  
Bayero University, Kano, PMB 3011, Kano State, Nigeria. +234 (0) 802 881 6063,  

 berkeleypublications.com 

 

 

Journal of African Sustainable Development 

E-ISSN 3026-8575 P-ISSN 3027-1266 

recorded the combined training, validation and test error values at the sixteenth epoch.  

After this period, both validation and training errors started to increase, while the 

training error decreased further.  The similarity in trend between the training, 

validations, and test curves depicts a successful training of the pattern recognition 

conjugate gradient (PRN-CGF) model and its potential use in assessing reliability and 

availability of cranes. 

 

 
Figure 11 Prediction error histogram for pattern recognition conjugate gradient (PRN-

CGF) model  

 

Figure 11 shows the prediction error histogram for pattern recognition conjugate 

gradient (PRN-CGF) model for cranes. Here, the error is measured as the difference 

between the target variable values and the corresponding predicted outcome values. A 

good model should have errors congregated around the zero error mark, such that the 

highest histogram bars would be found around the zero error line. From the histogram, 

it can be deduced that a majority of the error instances were located around the zero 

error line, while the error instances recorded further away from the zero error line were 

actually few. This can be confirmed by the smaller number of error instances recorded 
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for errors further from the zero error line. Since the majority of the error instances were 

congregated around the zero error line, it demonstrates the ability of the pattern 

recognition conjugate gradient (PRN-CGF) model to predict failure of cranes. This result 

is obviously useful in assessing the reliability and availability of cranes.    

 

 
Figure 12 Confusion matrix for pattern recognition conjugate gradient (PRN-CGF) model 

 

Figure 12 shows a representation of the confusion matrix for pattern recognition 

conjugate gradient (PRN-CGF) model. From the figure, it can be noticed that the 

confusion matrices of the test, validation and test data were all presented. In addition, a 

combined matrix of all the data was equally presented. The figure shows that after 

successfully training the conjugate gradient (PRN-CGF) model, the training result gave 
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87.6% correct classifications against 12.4% wrong classification. When the trained 

model was validated using validation data, the validation results gave 82.2% correct 

predictions, with 17.8% wrong classifications. The trained model was equally tested and 

the test results showed that 84.4% of the test data were correctly classified, while 15.6% 

were wrongly classified. However, the combined confusion matrix showed that for the 

whole data set, 86.3% of the data set was accurately classified using the available input 

variables, but 13.7% of the data set was wrongly classified. The wrong classifications 

include both false positive and false negative classifications. 

 

 
Figure 13 Receiver operating characteristic plot for pattern recognition conjugate 

gradient (PRN-CGF) model 
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Figure 13 shows the receiver operating characteristic plot for pattern recognition 

conjugate gradient (PRN-CGF) model. From the figure, it can be deduced that the 

receiver operating characteristic curves for training, validation, and test data all had 

slight deviations from the edges, which confirms the substantial accuracy of the 

characteristic plot for pattern recognition conjugate gradient (PRN-CGF) model for 

accurately classifying the failure potential of cranes. Another important metric derivable 

from the receiver operating characteristic plot is the area under the curve (AUC). Since 

the receiver operating characteristic plots shown above are considerably far from the 

counterdiagonal, the conjugate gradient (PRN-CGF) model can be described as 

satisfactorily accurate.  

 

 
Figure 14 Training, validation, and testing curves for pattern recognition BFGS Quasi-

Newton (PRN-BFG) model 

 

Figure 14 shows training, validation, and testing curves for pattern recognition BFGS 

Quasi-Newton (PRN-BFG) model of cranes. From the graph, it can be seen that all errors 

including training, validations, and test errors consistently reduced until after the second 

epoch. The combined errors continued to reduce rather slowly such that it recorded the 
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lowest combined training, validation and test error values occurred during the fifth 

epoch.  After this period, both validation and training errors started to increase, while 

the training error decreased further as the number of epochs increased.  The similarity 

in trend between the training, validations, and test curves depicts a successful training 

of the pattern recognition BFGS Quasi-Newton (PRN-BFG) model and its potential use in 

assessing the failure potential of cranes. 

 

 
Figure 15 Prediction error histogram for pattern recognition BFGS Quasi-Newton (PRN-

BFGS) model 

 

Figure 15 shows the prediction error histogram for pattern recognition BFGS Quasi-

Newton (PRN-BFGS) model for cranes. From the histogram, it can be deduced that a 

majority of the error instances were located around the zero error line, while the error 

instances recorded further away from the zero error line were actually few. This can be 

confirmed by the smaller number of error instances recorded for errors further from the 

zero error line. Since the majority of the error instances were congregated around the 

zero error line, it demonstrates the ability of the pattern recognition BFGS Quasi-Newton 

(PRN-BFGS) model to predict failure of cranes. This result is obviously useful in 

assessing the failure potential of cranes.    
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Figure 16 Confusion matrix for pattern recognition BFGS Quasi-Newton (PRN-BFGS) 

model 

 

Figure 16 shows a representation of the confusion matrix for pattern recognition BFGS 

Quasi-Newton (PRN-BFGS) model. From the figure, it can be noticed that the confusion 

matrices of the test, validation and test data were all presented. In addition, a combined 

matrix of all the data was equally presented. The figure shows that after successfully 

training the BFGS Quasi-Newton (PRN-BFGS) model, the training result gave 83.3% 

correct classifications against 16.7% wrong classification. When the trained model was 

validated using validation data, the validation results gave 84.4% correct predictions, 
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with 15.6% wrong classifications. The trained model was equally tested and the test 

results showed that an impressive 91.1% of the test data were correctly classified, while 

only 8.9% were wrongly classified. However, the combined confusion matrix showed 

that for the whole data set, 84.6% of the data set was accurately classified using the 

available input variables, but 15.4% of the data set was wrongly classified. The wrong 

classifications include both false positive and false negative classifications. 

 

 
Figure 17 Receiver operating characteristic plot for pattern recognition BFGS Quasi-

Newton (PRN-BFGS) model 

 

Figure 17 shows the receiver operating characteristic plot for pattern recognition BFGS 

Quasi-Newton (PRN-BFGS) model. From the figure, it can be deduced that the receiver 

operating characteristic curves for training, validation, and test data all had slight 
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deviations from the edges, which confirms the substantial accuracy of the characteristic 

plot for pattern recognition BFGS Quasi-Newton (PRN-BFGS) model for accurately 

classifying the failure potential of cranes. Another important metric derivable from the 

receiver operating characteristic plot is the area under the curve (AUC). Since the 

receiver operating characteristic plots shown above are considerably far from the 

counterdiagonal, the BFGS Quasi-Newton (PRN-BFGS) model can be described as 

satisfactorily accurate.  

 

 
Figure 18 Training, validation, and testing curves for pattern recognition one step secant 

(PRN-OSS) model 

 

Figure 18 shows training, validation, and testing curves for pattern recognition one step 

secant (PRN-OSS) model of cranes. From the graph, it can be seen that all errors 

including training, validations, and test errors consistently reduced until after the third 

epoch. The third epoch also serves as the epoch with the lowest combined errors, which 

represents an optimal model.  After this period, both validation and training errors 

started to increase, while the training error decreased further.  The similarity in trend 

between the training, validations, and test curves depicts a successful training of the 
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pattern recognition one step secant (PRN-OSS) model and its potential use in assessing 

reliability and availability of cranes. 

 

 
Figure 19 Prediction error histogram for pattern recognition one step secant (PRN-OSS) 

model 

 

Figure 19 shows the prediction error histogram for pattern recognition one step secant 

(PRN-OSS) model for cranes. From the histogram, it can be deduced that a majority of 

the error instances were located around the zero error line, while the error instances 

recorded further away from the zero error line were actually few. This can be confirmed 

by the smaller number of error instances recorded for errors further from the zero error 

line. Since the majority of the error instances were congregated around the zero error 

line, it demonstrates the ability of the pattern recognition one step secant (PRN-OSS) 

model to predict failure of cranes. This result is obviously useful in assessing the 

reliability and availability of cranes.    
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Figure 20 Confusion matrix for pattern recognition one step secant (PRN-OSS) model 

 

Figure 20 shows a representation of the confusion matrix for pattern recognition one 

step secant (PRN-OSS) model. From the figure, it can be noticed that the confusion 

matrices of the test, validation and test data were all presented. In addition, a combined 

matrix of all the data was equally presented. The figure shows that after successfully 

training the one step secant (PRN-OSS) model, the training result gave 87.1% correct 

classifications against 12.9% wrong classifications. When the trained model was 

validated using validation data, the validation results gave an impressive 91.1% correct 

predictions, with a considerably low 8.9% wrong classifications. The trained model was 

equally tested and the test results showed that a rather small 68.9% of the test data were 

correctly classified, while a considerably high 31.3% were wrongly classified. However, 

the combined confusion matrix showed that for the whole data set, 84.9% of the data set 
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was accurately classified using the available input variables, but 15.1% of the data set 

was wrongly classified. The wrong classifications include both false positive and false 

negative classifications. 

 

 
Figure 21 Receiver operating characteristic plot for pattern recognition one step secant 

(PRN-OSS) model 

 

Figure 21 shows the receiver operating characteristic plot for pattern recognition one 

step secant (PRN-OSS) model. From the figure, it can be deduced that the receiver 

operating characteristic curves for training, validation, and test data all had slight 

deviations from the edges, which confirms the substantial accuracy of the characteristic 

plot for pattern recognition one step secant (PRN-OSS) model for accurately classifying 

the failure potential of cranes. Another important metric derivable from the receiver 

operating characteristic plot is the area under the curve (AUC). Since the receiver 
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operating characteristic plots shown above are considerably far from the 

counterdiagonal, the one step secant (PRN-OSS) model can be described as satisfactorily 

accurate.  

 

Conclusion 

New artificial neural network models were developed for assessing the reliability and 

availability of cranes. The machines utilized for data acquisition were from a nearby 

seaport. From the obtained results, the PRN-LMA models were the models that gave the 

highest prediction accuracy. In addition, the Bayesian regularization models (PRN-BR) 

gave the least prediction accuracy. Subsequently, PRN-CGF model, followed by PRN-LMA 

model predicted the highest number of failure days for the cranes, while both models 

gave the highest prediction accuracy for failure days.  Obviously, the Bayesian 

regularization models gave the highest functional days predictions, but they could not 

correctly predict any of the failure days.  
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