$_{09.30.2025}$ **JOURNAL OF**

Management Science & Entrepreneurship (JMSE) Vol. 9 No. 7

HE EFFECTS OF MULTITASKING ON COGNITIVE PERFORMANCE AND PRODUCTIVITY: A COMPARATIVE ANALYSIS

*MR. EZZU YAHAYA MOMOH; & **MUHAMMAD ADAMU; & **ABDALLAH ABUBAKAR ISA,

*Corporate Affairs and Information, National Productivity Centre, Ondo State Office, Akure. **Corporate Affairs and Information, National Productivity Centre, Kaduna Stste Office.

Corresponding Author: yahayaezzu@gmail.com

DOI Link: https://doi.org/10.70382/bejmse.v9i7.042

ABSTRACT

he contemporary professional and academic landscapes, characterized by an incessant flow of information and demands. popularized concurrent have multitasking as a seemingly indispensable skill. This article examines the impact of concurrent task management—commonly termed multitasking—on productivity. Through comparative analysis of empirical research from cognitive psychology and neuroscience, this paper argues that what is often perceived as multitasking is, in neurological terms, rapid taskswitching, a process that incurs significant cognitive costs. These costs manifest as increased time completion, a higher propensity for errors, and diminished memory retention. Conversely, the article explores contexts where certain forms of multitasking may be less detrimental. The conclusion affirms that for complex, goal-oriented work, monotasking—the

Introduction

Productivity, classically defined as the ratio of output to input, serves as a cornerstone metric for evaluating performance at both organizational and individual levels (Syverson, 2011). Its pursuit has become a central preoccupation within the digital era, where technological tools promise seamless efficiency. This environment has fostered a pervasive culture that frequently valorizes the capacity to manage multiple concurrent tasks—a practice commonly known as multitasking. This phenomenon is exemplified by commonplace behaviors such as checking emails during virtual meetings or alternating between rapidly report writing and responding to

BERKELEY RESEARCH & PUBLICATIONS INTERNATIONAL Bayero University, Kano, PMB 3011, Kano State, Nigeria. +234 (0) 802 881 6063,

brp?

Journal of Management Science and Entrepreneurship

focused engagement with a single task—remains the superior strategy for sustainable productivity and cognitive fidelity.

Keywords: Multitasking, Productivity, Task-Switching, Monotasking, Cognitive Costs, Performance Metrics, Error Rate, Time Completion, Memory Retention, and Cognitive Fidelity.

nstant messaging platforms.

Consequently, in many professional and academic settings, multitasking is misperceived as a badge of efficiency and a testament to one's ability to thrive under pressure. This perception, however, stands in stark contrast to a substantial body of cognitive and psychological research that challenges this presumption. Seminal studies posit that the practice of multitasking is fundamentally at odds with the information-processing architecture of the human brain, which is optimized for focused attention rather than parallel processing (Pashler, 1994; Rubinstein, Meyer, & Evans, 2001). Instead of simultaneous task execution, the brain engages in "task-switching," a process that incurs cognitive costs through attention residue, increased error rates, and ultimately, time lost to mental reorientation.

Human cognition is governed by a limited-capacity central executive system, primarily located within the prefrontal cortex, which is responsible for attentional control and task management (Baddeley, 2000). Neuroimaging studies confirm that the brain does not process multiple attention-demanding tasks in true parallelism but rather engages in a rapid and serial process of task-switching (Marois & Ivanoff, 2005).

The Cognitive Architecture of Multitasking

To comprehensively apprehend the deleterious impact of multitasking on cognitive performance, one must first deconstruct and appreciate its fundamental underlying mechanism, which is neurologically distinct from the popular perception of simultaneous processing. Neuroscientific research, utilizing methodologies such as fMRI and ERP, robustly indicates that the human brain is architecturally limited and lacks a dedicated, centralized neural network for processing multiple attention-rich tasks in genuine parallel (Marois & Ivanoff, 2005). This bottleneck theory posits that tasks requiring conscious, selective attention must be serialized, as they compete for a finite pool of cognitive resources. Consequently, what is behaviorally observed as multitasking is more accurately described as a rapid and serial process of task-switching. This switching is not an automatic function but is rather a metabolically costly procedure governed by sophisticated executive control processes localized primarily within the prefrontal cortex and the anterior cingulate cortex. These executive functions—

Journal of Management Science and Entrepreneurship

including task-set reconfiguration, goal shifting, and the active inhibition of the previous task's cognitive rules—are recruited to disengage from one task and engage with the next, a process that, despite its speed, is neither seamless nor instantaneous (Marois & Ivanoff, 2005). Thus, the very act of juggling tasks is inherently inefficient, as it places demands on the brain's management systems rather than on the tasks themselves.

This switching is not seamless. Each transition between tasks incurs a "switch cost" (Monsell, 2003). These costs are multifaceted:

- **Time Cost:** The brain requires time to disengage from Task A, activate the cognitive rules for Task B, and then re-engage. This repeated reorientation accumulates, leading to longer overall task completion times compared to sequential tasking.
- **Error Cost:** Switching increases cognitive load, leaving fewer mental resources for error-checking. This often results in a higher rate of mistakes and oversights.
- **Memory Cost:** The encoding of information into long-term memory is compromised during distracted, multitasking states. This leads to poorer retention and recall of information processed while multitasking (Foerde et al., 2006).

When is Multitasking Less Problematic

It is critical to note that not all forms of multitasking are equally deleterious. The cognitive cost is highest when tasks are:

- i. Complex and require conscious thought.
- ii. Novel and unpracticed.
- iii. Demand the same type of cognitive resource (e.g., two language-based tasks).

In the same vein, productivity may not be severely hampered when one of the concurrent tasks is highly automated and requires minimal cognitive effort. For instance, walking (an automated motor function) while listening to a podcast (a cognitive task) is generally sustainable. Similarly, listening to instrumental music may not significantly impair writing performance for some individuals, as the tasks engage partially distinct neural pathways.

PROBLEM STATEMENT

The modern professional and academic landscapes are characterized by a pervasive culture of concurrent task management, commonly termed multitasking. Driven by technological advancements and increasing workloads, individuals frequently engage in multiple attention-demanding activities simultaneously, such as processing emails during meetings, alternating between report writing and instant messaging, or

Journal of Management Science and Entrepreneurship

consuming media while studying. This practice is often intuitively adopted as a strategy to enhance efficiency and productivity within time-constrained environments.

However, a significant and troubling discrepancy exists between the perceived benefits of multitasking and a growing body of empirical evidence from cognitive neuroscience and psychology. Foundational research suggests that what is colloquially called multitasking is more accurately described as rapid task-switching, a process that imposes substantial cognitive costs, including increased error rates, prolonged task completion times, and impaired memory encoding (Marois & Ivanoff, 2005; Monsell, 2003). These costs potentially negate any perceived gains in efficiency, thereby undermining the very productivity that multitasking aims to enhance. Despite this evidence, the behavior persists and is often encouraged within organizational and educational cultures, creating a critical gap between scientific understanding and common practice. Furthermore, while numerous studies have isolated the negative effects of multitasking on discrete cognitive tasks, there is a need for a synthesized, comparative analysis that directly contrasts the outcomes of multitasking paradigms with those of focused, single-task work (monotasking) across a comprehensive range of performance metrics. Therefore, this study seeks to investigate this problem through a systematic, comparative analysis. The core research problem is: The Effects of Multitasking on Cognitive Performance and Productivity: a Comparative Analysis. This Research Is Necessary To Provide A Definitive, Evidence-Based Assessment That Can Inform Individual habits, organizational policies, and educational strategies, ultimately aligning work practices with the inherent capabilities and limitations of human cognition.

RESEARCH QUESTIONS

The following research questions were raised in order to guide the study:

- 3. What quantifiable degree does multitasking degrade complex cognitive performance compared to sequential tasking?
- 4. How do these cognitive deficits directly translate into measurable losses in productivity in real-world settings?
- 5. What are the longitudinal implications of chronic multitasking on cognitive control and work quality?

AIMS AND OBJECTIVES OF THE STUDY

To achieve this aim, the study will pursue the following specific objectives:

- 1) To quantitatively assess and compare the performance degradation in complex cognitive tasks under multitasking and sequential tasking conditions.
- 2) To establish a direct correlation between laboratory-observed cognitive deficits and quantifiable losses in productivity in simulated real-world settings.

BERKELEY RESEARCH & PUBLICATIONS INTERNATIONAL Bayero University, Kano, PMB 3011, Kano State, Nigeria. +234 (0) 802 881 6063, berkeleypublications.com

Journal of Management Science and Entrepreneurship

3) To investigate the longitudinal effects of chronic multitasking on sustained cognitive control and the quality of work output.

LITERATURE REVIEW

A substantial body of academic research has consistently demonstrated that multitasking, often perceived as a necessary skill in the modern information economy, imposes significant costs on both cognitive performance and productivity. The prevailing consensus in cognitive neuroscience indicates that what is commonly termed "multitasking" is more accurately described as "task-switching," a process wherein the brain rapidly toggles between distinct cognitive tasks rather than processing them in parallel (American Psychological Association, 2006). This constant shifting incurs "switch costs," manifesting as increased error rates, prolonged task completion times, and a degradation in the depth of information processing (Rubinstein, Meyer, & Evans, 2001). Furthermore, research by Ophir, Nass, and Wagner (2009) revealed that individuals who frequently engage in media multitasking exhibit poorer performance in task-switching tests, suggesting that chronic multitasking may even impair the cognitive control mechanisms necessary for effective focus and filtering of distractions. In contrast, a comparative analysis of work environments reveals that monotasking sustained attention on a single objective—consistently yields superior outcomes in terms of both the quality and quantity of output (Mark, Gudith, & Klocke, 2008). This is particularly evident in complex tasks requiring deep cognitive engagement, where interruptions and concurrent tasks can severely disrupt workflow and increase the cognitive load, leading to mental fatigue and reduced performance (Altmann, Trafton, & Hambrick, 2014). Therefore, while the allure of multitasking is rooted in a perception of increased efficiency, the empirical evidence strongly suggests that it is a counterproductive strategy that ultimately compromises the very cognitive resources and productive outcomes it seeks to enhance.

REVIEW OF EMPIRICAL STUDIES

A comparative review of studies reveals a consistent performance deficit associated with multitasking in complex domains.

The Ophir, Nass, and Wagner (2009) Study: A seminal study compared self-proclaimed "heavy media multitaskers" (HMM) with "light media multitaskers" (LMM). Contrary to expectation, HMMs performed significantly worse on tests of task-switching ability. They were more susceptible to irrelevant environmental stimuli and had greater difficulty filtering out distractions, suggesting that chronic multitasking may actually erode the very cognitive control abilities it purportedly requires.

Pg.98

Vol. 9, No. 7

Journal of Management Science and Entrepreneurship

The "Email Interruption" Paradigm: Research by Mark, Gudith, and Klocke (2008) demonstrated that after an email interruption, it took knowledge workers an average of over a minute to return to their primary task—a phenomenon known as the "resumption lag." Cumulatively, these interruptions can consume a substantial portion of the workday, drastically reducing productive output on primary tasks.

The Myth of the "Multitasking Generation": While digital natives are often assumed to be adept multitaskers, studies on learning show severe drawbacks. Students who multitask with laptops or mobile phones during lectures demonstrate poorer comprehension and perform worse on subsequent exams compared to those who do not (Sana, Weston, & Cepeda, 2013). The cognitive load of switching between listening and texting impairs the deep processing necessary for learning.

Conclusion

In conclusion, despite the pervasive allure of multitasking and its promise of enhanced efficiency, the empirical evidence firmly establishes that it is a cognitively costly illusion. For the attainment of meaningful and high-quality productivity, the sustained, focused mind remains the most powerful and reliable instrument at our disposal.

REFERENCES

- Altmann, E. M., Trafton, J. G., & Hambrick, D. Z. (2014). Momentary interruptions can derail the train of thought. Journal of Experimental Psychology: General, 143 (1), 215-226.
- American Psychological Association. (2006). Multitasking: Switching costs. https://www.apa.org/research/a ction/multitask.
- Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), 417-
- Foerde, K., Knowlton, B. J., & Poldrack, R. A. (2006). Modulation of competing memory systems by distraction. Proceedings of the National Academy of Sciences, 103 (31), 11778-11783.
- Mark, G., Gudith, D., & Klocke, U. (2008). The cost of interrupted work: more speed and stress. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 107-110.
- Mark, G., Gudith, D., & Klocke, U. (2008). The cost of interrupted work: more speed and stress. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, 107-110.
- Marois, R., & Ivanoff, J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9 (6), 296-305.
- Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7 (3), 134-140.
- Ophir, E., Nass, C., & Wagner, A. D. (2009). Cognitive control in media multitaskers. Proceedings of the National Academy of Sciences, 106 (37), 15583-15587.
- Ophir, E., Nass, C., & Wagner, A. D. (2009). Cognitive control in media multitaskers. Proceedings of the National Academy of Sciences, 106 (37), 15583-15587.
- Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116 (2), 220-244. https://doi.org/10.1037/0033-2909.116.2.220.

BERKELEY RESEARCH & PUBLICATIONS INTERNATIONAL

Pg.99

Vol. 9, No. 7

Journal of Management Science and Entrepreneurship

- Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27 (4), 763–797. https://doi.org/10.1037/0096-1523.27.4.763.
- Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27 (4), 763–797.
- Sana, F., Weston, T., & Cepeda, N. J. (2013). Laptop multitasking hinders classroom learning for both users and nearby peers. Computers & Education, 62, 24-31.
- Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12 (2), 257–285. https://doi.org/10.1207/s15516709cog1202 4.
- Syverson, C. (2011). What determines productivity? Journal of Economic Literature, 49 (2), 326–365. https://doi.org/10.1257/jel.49.2.326.